Adibi, M., Yazdkhasti, B. & Farhmand, M. (2008). Globalization with an emphasis on the social identity of Youth in Isfahan City. National Studies Quarterly, 9(3), 99-118.
(in Persian)
Alamoodi, A., Zaidan, B., Zaidan, A., Albahri, O., Mohammed, K., Malik, R., Almahdi, E., Chyad, M., Tareq, Z., Albahri, A., Hameed, H. & Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review.
Expert Systems with Applications,
167, 114155.
https://doi.org/10.1016/j.eswa.2020. 114155
Basiri, M. E., Habibi, S. & Nemati, S. (2021). Sentiment analysis of Corona-related Tweets in Iran using deep neural network.
Intelligent Business Management Studies, 10(37), 109-134. doi:
10.22054/ims.2021.54705.1799 (
in Persian)
Blumer, H. (1939). The mass, the public and public opinion. In A.M. Lee (Ed.), New outlines in the principles of sociology. New York: Baenes & Noble
Bollas, C. (1993). Being a character: Psychoanalysis and self experience. Routledge.
Brosius, A., Ohme, J. & de Vreese, C. H. (2022). Generational gaps in media trust and its antecedents in Europe.
The International Journal of Press/Politics, 27(3), 648–667.
https://doi.org/10.1177/19401612211039440
Chakraborty, K., Bhatia, S., Bhattacharyya, S., Platos, J., Bag, R. & Hassanien, A. E. (2020). Sentiment analysis of COVID-19 tweets by deep learning classifiers—a study to show how popularity is affecting accuracy in social media.
Applied Soft Computing,
97, 106754.
https://doi.org/10.1016/j.asoc.2020.106754
Chintalapudi, N., Battineni, G. & Amenta, F. (2021). Sentimental analysis of COVID-19 Tweets using deep learning models. Infectious Disease Reports, 13(2), 329-339. https://doi.org/10.3390/idr13020032
Drenten, J. (2012). Snapshots of the self: Exploring the role of online mobile photo sharing in identity development among adolescent girls. In Angeline G. Close (Ed.), Online Consumer Behavior: Theory and Research in Social Media, Advertising, and E-Tail, New York, NY: Routledge, 3-34.
Gupta, R., Vishwanath, A. & Yang, Y. (2021).
COVID-19 Twitter dataset with latent topics, sentiments and emotions attributes. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2021-11-04.
https://doi.org/10.3886/E120321V11
Hall, S. (1980). Coding and encoding in the television discourse. In s Hall et al. (Eds.), Culture, media, language. London: Hutchinson.
Honeycutt, C. & Herring, S. (2009). Beyond microblogging: Conversation and collaboration in Twitter. In
Proceedings of the Forty-Second Hawai’i International Conference on System Sciences (HICSS-42) (pp. 1–10).
Los Alamitos, CA: IEEE
Hutchinson, A. (2020, December 7). Twitter outlines the biggest tweet trends of 2020, including TV shows, sports, people and more. Social Media Today. https://www.socialmediatoday.com/news/twitter-outlines-the-biggest-tweet-trends-of-2020-including-tv-shows-spor/591773/
Jansen, B. J., Sobel, K. & Cook, G. (2010). Gen X and Ys attitudes on using social media platforms for opinion sharing.
Proceedings of the 28th of the International Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA’ 10.
https://doi.org/10.1145/1753846.1754068
Katz, E. & Lazarsfeld, P. F. (1955). Personal influence: The part played by people in the flow of mass communications. Routledge.
Kausar, M. A., Soosaimanickam, A. & Nasar, M. (2021). Public sentiment analysis on Twitter data during COVID-19 outbreak. International Journal of Advanced Computer Science & Applications, 12(2). https://doi.org/10.14569/ijacsa.2021.0120252
Kemp, S. (2021, February 11). Digital 2020: April global Statshot — data reportal – global digital insights. Data reportal – global digital insights. https://datareportal.com/reports/digital-2020-april-global-statshot
Kermani, H., Tafreshi, A., Ghodsi, A. M., Makou, A. B. & Zar, A. A. (2023). COVID-19 on Iranian Twitter and Instagram: Discourse analysis of users’ generated content during the COVID-19 pandemic. New Media Studies, 9(35), 349-396. (in Persian)
Khajeheian, D., Salavatian, S., Kolli, S. & Soltani, T. (2020). Motivations and hashtag patterns of Iranian digital natives on Instagram. New Media Studies, 6(23), 155-188. doi: 10.22054/nms.2021.47908.861. (in Persian)
Khajeheian, D., Salavatian, S., Kolli, S. & Soltani, T. (2020). Behavioral patterns of Iranian digital natives on Instagram: A data mining study using social media big data.
Communication Research, 27(101), 9-32. doi:
10.22082/cr.2020.117695.1961 (
in Persian)
Kundanis, R. (2008). Children, teens, families, and mass media the millennial generation. Routledge.
Lenhart, A., Hitlin, P. & Madden, M. (2005). Pew internet & American life project-teens and technology. Washington DC: Pew Research Center
Lwin, M. O., Lu, J., Sheldenkar, A., Schulz, P. J., Shin, W., Gupta, R., Yang, Y. & surveillance. (2020). Global sentiments surrounding the COVID-19 pandemic on Twitter: analysis of Twitter trends. JMIR Public Health and Surveillance, 6, e19447.
McMullan, L. K. (2020). Clinical trials in an Ebola outbreak seek to find an evidencebased cure. EBioMedicine
Mc Quail, D. (1994). Mass communication theory: An introduction. London: Sage
Mc Quail, D. (1997). Audience analysis. SAGE Publications, Inc
Nabi, R. L. & Oliver, M. B. (Eds.). (2009). The Sage handbook of media processes and effects. SAGE Publications, Inc.
Palfrey, J. & Gasser, U. (2008). Born digital: Understanding the first generation of digital natives. Basic Books, New York.
Saroj, A. & Pal, S. (2020). Use of social media in crisis management: A survey. International Journal of Disaster Risk Reduction, 48, 101584. https://doi.org/10.1016/j.ijdrr.2020. 101584
Saulīte, L. & Ščeulovs, D. (2022). The impact on audience media brand choice using Media brands uniqueness phenomenon. Journal of Open Innovation, 8(3), 128. https://doi.org/10.3390/joitmc8030128
Strauss, W. & Howe, N. (2000). Millennials rising: The next great generation. Vintage.
Zhang, Y., Chen, F. & Lukito, J. (2022). Network amplification of politicized information and misinformation about COVID-19 by conservative media and partisan influencers on Twitter. Political Communication, 40(1), 24–47. https://doi.org/10.1080/10584609.2022. 2113844