Agarwal, R., Gupta, S. & Chatterjee, N. (2022). Profiling fake news spreaders on twitter: a clickbait and linguistic feature-based scheme. In International Conference on Applications of Natural Language to Information Systems, (PP.345-357). Cham: Springer International Publishing.
Blasco-Duatis, M., Coenders, G., Saez, M., García, N. F. & Cunha, I. F. (2019). Mapping the agenda-setting theory, priming and the spiral of silence in Twitter accounts of political parties. International Journal of Web Based Communities, 15(1), 4-24.
Bucher, T. & Helmond, A. (2018). The affordances of social media platforms. The SAGE handbook of social media, 1(1), 233-253.
Driss, O. B., Mellouli, S. & Trabelsi, Z. (2019). From citizens to government policy-makers: Social media data analysis. Government Information Quarterly, 36, 560–570.
Enli, G. (2017). Twitter as arena for the authentic outsider: Exploring the social media campaigns of Trump and Clinton in the 2016 US presidential election. European journal of communication, 32(1), 50-61.
Fayazi Borujeni, S.M.R., Khojasteh, H., Givian, A. & Sajjadi Jaghargh, S.A. (2021). Thought leaders in social networks (A case study of political thought leaders on Twitter). Interdisciplinary Studies in Media and Culture, 11(1), 213-243. doi: 10.30465/ismc.2021.36032.2377. (in Persian)
Gintova, M. (2019). Understanding government social media users: an analysis of interactions on Immigration, Refugees and Citizenship Canada Twitter and Facebook. Government Information Quarterly, 36(4), 101388.
He, W., Zha, S. & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472.
Ho-Dac, N. N. (2020). The value of online user generated content in product development. Journal of Business Research, 112, 136-146.
Kim, Y., Kim, Y. & Zhou, S. (2018). Theoretical and methodological trends of agenda-setting theory: A thematic analysis of the last four decades of research. The Agenda Setting Journal, 1(1), 5-22
Lahlou, Y., Fkihi, S. E. & Faizi, R. (2021, March). Automatic detection of fake news on Twitter by using a new feature: User credibility. In International Conference On Big Data and Internet of Things (pp. 568-580). Cham: Springer International Publishing.
Lee, C. J. & Chua, H. N. (2021, November). Using linguistics and psycholinguistics features in machine learning for fake news classification through twitter. In Proceedings of International Conference on Data Science and Applications: ICDSA 2021, Volume 1 (pp. 717-730). Singapore: Springer Singapore.
Lee, E. J., Lee, H. Y. & Choi, S. (2020). Is the message the medium? How politicians’ Twitter blunders affect perceived authenticity of Twitter communication. Computers in Human Behavior, 104, 106188.
Lee, J. & Xu, W. (2018). The more attacks, the more retweets: Trump’s and Clinton’s agenda setting on Twitter. Public Relations Review, 44(2), 201-213.
Mazoochi, M., Rabiei, L., Rahmani, F. & Rajabi, Z. (2025). Constructing colloquial dataset for persian sentiment analysis of social microblogs. Multimedia Tools and Applications, 1-16.
McCombs, M. E. & Shaw, D. L. (1972). The agenda-setting function of mass media. Public opinion quarterly, 36(2), 176-187.
Napoli, P. N. (2019). User Data as Public Resource: Implications for Social Media Regulation, Policy and Internet. doi: 10.1002/poi3.216.
Panayiotopoulos, P., Bowen, F. & Brooker, P. (2017). The value of social media data: Integrating crowd capabilities in evidence-based policy. Government Information Quarterly,34: 601–612.
Park, C. S. & Kaye, B. K. (2017). The tweet goes on: Interconnection of Twitter opinion leadership, network size, and civic engagement. Computers in Human Behavior, 69, 174- 180.
Rajabi, Z. & Valavi, M. (2021). A survey on sentiment analysis in Persian: a comprehensive system perspective covering challenges and advances in resources and methods. Cognitive Computation, 13(4), 882-902.
Regstad, I. (2016). Is Twitter just rehashing? Intermedia agenda setting between Twitter and mainstream media. Journal of Information Technology & Politics, 13(2), 142-158.
Saif, H., He, Y. & Alani, H. (2012). Semantic sentiment analysis of twitter. In International semantic web conference (pp. 508-524). Springer, Berlin, Heidelberg.
Shah, C. & Pomerantz, J. (2010, July). Evaluating and predicting answer quality in community QA. In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval (pp. 411-418).
Shang, L., Chen, B., Vora, A., Zhang, Y., Cai, X. & Wang, D. (2024, May). SocialDrought: a social and news media driven dataset and analytical platform towards understanding societal impact of drought. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 18, pp. 2051-2062).
Shu, K., Mahudeswaran, D., Wang, S., Lee, D. & Liu, H. (2020). Fake news net: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media.
Big Data,
8(3).
https://doi.org/10.1089/big.2020.0062
Simonofski, A., Fink, J. & Burnay, C. (2021). Supporting policy-making with social media and e-participation platforms data: A policy analytics framework. Government Information Quarterly, 38(3), 112- 130.
Stamatelatos, G., Gyftopoulos, S., Drosatos, G. & Efraimidis, P. S. (2020). Revealing the political affinity of online entities through their Twitter followers. Information Processing and Management, 57, 102-172.
Valenzuela, S., Puente, S. & Flores, P. (2017). Comparing disaster news on Twitter and television: An intermedia agenda setting perspective. Journal of Broadcasting & Electronic Media, 61(4), 615-637.
Walker, G., Cass, N., Burningham, K. & Barnett, J. (2010). Renewable energy and sociotechnical change: Imagined subjectivities of “the public” and their implications. Environment and Planning A, 42(4), 931–947.
Wang, X., Wei, F., Liu, X., Zhou, M. & Zhang, M. (2015). Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In Proceedings of the 20th ACM international conference on Information and knowledge management. 1031-1040.
Wong, F. M. F., Wei, Z., Liu, S., Zhao, L. & Zheng, Q. (2018). Hashtag sentiment classification via semantic analysis. IEEE Transactions on Knowledge and Data Engineering, 30(11), 2165–2177.
Yan, Z. (2018). Big data and government governance. International Conference on Information Management and Processing. IEEE. 110- 114.
Zhou, Z., Bandari, R., Kong, J., Qian, H. & Roychowdhury, V. (2010, July). Information resonance on twitter: watching iran. In Proceedings of the first workshop on social media analytics (pp. 123-131).